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This paper deals with the harmonic-balance finite element analysis of a multi-turn winding device coupled to electrical circuits
comprising nonlinear components. The eddy-current effects in the windings are accounted for via a frequency-dependent reluctivity
and impedance with a homogenization technique. The proposed multi-frequency approach is validated through a single-phase four-
diode rectifier with an axisymmetric FE model of an inductor. The harmonic-balance and time-stepping results are compared.
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I. INTRODUCTION

ACCOUNTING for the sometimes non-negligible eddy-
current effects in the windings of electromagnetic devices

requires a brute-force finite element (FE) model with a fine
discretization of each turn, which is too computationally expen-
sive. Frequency-domain homogenization techniques provide
a closed-form continuous representation of the homogenized
winding [1]. In [2], frequency-dependent proximity and skin
effect parameters are identified in a general approach and
straightforwardly included in a FE model. This flexible winding
homogenization technique is further embedded in a harmonic-
balance (HB) FE approach in [3].

In this paper, we aim at studying a homogenized multi-
turn winding coupled to an electrical circuit with nonlinear
components via a HB-FE technique, which may be an efficient
alternative to plain time-stepping in case of long transients [4].
Among the available implementations, e.g. [5], we adopt the
Galerkin time-domain variant in [6]. The homogenized field-
nonlinear circuit coupled model is validated by means of a
single-phase four-diode rectifier and an inductor (Fig. 1).

II. HB-FE MODELS WITH NONLINEAR CIRCUITS

Let us consider an electrical circuit that comprises a number
of conductors in the FE domain (with e.g. a magnetic vector
potential formulation) and a number of lumped resistances,
inductances and voltage sources We introduce loop currents
linked to a set of independent oriented current loops in the
circuit. We can write the following generic nonlinear system:

M(X(t))X(t) + N(X(t))
dX

dt
= F(t) , (1)

where X(t) is the column vector of unknowns; M is the
matrix comprising time-independent FE blocks, connectivity
matrices and square loop resistance matrices; N is the matrix
accounting for the time-dependent FE blocks and square loop
inductance matrices; and F(t) includes the column vectors
with the sources. The nonlinearity in M may be due to
field-dependent reluctivities (e.g. reversible material law) or to
current-dependent resistances in the system (e.g. the on and off

resistances of a diode). A dynamic current-dependent lumped
component can be included in matrix N (e.g a shelf).

The HB approach allows obtaining the periodic steady-
state solution by solving a unique, but larger and denser,
system of algebraic equations. The n coefficients in X(t)
can be expressed as a truncated Fourier series considering
nf frequencies fk, k = 1, 2, . . ., integer multiples of the
fundamental frequency f1 (period T = 1/f1), or pulsations
ωk = 2πfk, for a total of nh = 2nf harmonic (cosine or sine)
basis functions (BFs), and n·nh unknown coefficients collected
in column vectors H(t) and XH respectively:

H(t)=
[
h1 · · ·hnh

]>
=
[
· · · cos(ωkt) sin(ωkt) · · ·

]>
, (2)

X(t) =
(
1⊗H(t)>

)
XH , (3)

where ⊗ denotes the Kronecker product. For the sake of
simplicity, a dc term (with unitary BF) is not considered [6].

These nh cosine and sine BFs are mutually orthogonal and
coupled via their time derivative:

2

T

∫ T

0

H(t)H>(t) dt = 1 , (4)

Q =
2

T1

∫ T

0

H(t)
dH>

dt
dt =


· · · · · · · · · · · ·
· · · 0 ωk · · ·
· · · −ωk 0 · · ·
· · · · · · · · · · · ·

 . (5)

The ODEs (1) are weakly imposed using the hj(t) BFs [6]:

2

T

∫ T

0

(
MX + N

dX

dt

)
hj dt =

2

T

∫ T

0

Fhj dt , (6)

leading to one system of n ·nh algebraic equations, that in the
linear case reads:

MHXH = FH , MH = 1⊗M + Q⊗N , (7)

FH =
2

T

∫ T

0

H(t)⊗ F(t) dt . (8)

In case of nonlinearity, the Newton-Raphson (NR) method is
a good choice for linearizing the nonlinear HB system (6). At
the material level, the harmonic differential reluctivity tensor



depends on the differential reluctivity tensor which in turn
depends on the harmonic component of the induction field.
Analogously, the current-dependent lumped resistances (e.g.
diodes) are characterized by harmonic differential resistances
that depend on the variation of differential resistances [6]. The
time integration in (6) is performed numerically considering
a sufficiently large number of equidistant and equal-weighted
time instants in [0, T ].

III. HOMOGENIZATION OF WINDINGS

In (1) eddy currents are explicitly accounted for via a
conductivity-dependent eddy-current matrix (classical FE) or
via a frequency-dependent complex reluctivity [2] in the ho-
mogenized winding window (one stranded inductor) and a
complex impedance replacing the dc resistance.

In the multi-harmonic case, we adopt a different proximity-
effect complex reluctivity νprox (fk) and skin-effect impedance
Zskin(fk) per considered frequency in the HB approach [3].
The cosine and sine HB-BFs are coupled due to these effects.
The matrix MH is modified by including νprox (fk) in the
reluctivity-dependent stiffness matrix S(ν) as:

· · · · · · · · · · · ·
· · · S(<(νprox (fk))) S(=(νprox (fk))) · · ·
· · · −S(=(νprox (fk))) S(<(νprox (fk))) · · ·
· · · · · · · · · · · ·

 , (9)

and by integrating Zprox (fk) in the circuit coupling blocks
linking currents and voltages in stranded conductors:

· · · · · · · · · · · ·
· · · <(Zskin(fk)) =(Zskin(fk)) · · ·
· · · −=(Zskin(fk)) <(Zskin(fk)) · · ·
· · · · · · · · · · · ·

 . (10)

IV. APPLICATION EXAMPLE

By way of validation, we consider a single-phase four-
diode rectifier with a sinusoidal voltage supply (50 V peak,
f = 10 kHz), a smoothing inductor, a smoothing capacitor
(C = 10µF) and a load resistance Rdc = 100 Ω. The diode
resistances are Ron = 10−1 Ω and Roff = 105 Ω. The inductor
is the multi-turn coil described in [2]. It is modelled by FEs
accurately accounting for eddy-current effects.

Fig. 1. Flux lines in winding domain obtained with the fine (left) and
homogenized model (right) at f = 50 kHz. Detail of the meshes.

Time-stepping simulations (no homogenization) are carried
out for validating the HB approach (with homogenization). The
long transient (150 periods) is time-stepped with ∆t = T/240.

The dc-term and all harmonics are present in the currents at the
ac-side of the rectifier and at the inductor (dc-side). The corre-
sponding current waveforms computed with the homogenized
winding HB approach are compared to the reference TD result
in Fig. 2. HB calculations are carried out considering first only
the dc-term and the fundamental frequency (denoted by HB 2),
and then gradually expanding the spectrum with harmonics, up
to the 99th harmonic (HB 100). One observes that from HB 50
on, the agreement with the time-stepping results is excellent at
the coil level. More harmonics are needed at the ac-side due
to the sharp switching of the diodes.

The NR process converges well, even in the presence of the
diodes in the electrical circuit. If the NR process is initialised
with the previous HB solution (with less frequencies), the
computation time is considerably reduced.
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Fig. 2. Current waveforms at the ac-side of the rectifier (up) and at the coil,
dc-side (down).

Further results and a thorough discussion on the computa-
tional cost will be included in the full paper.
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